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A simple-shear construction from Thomson & Tait (1867) 
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Abstract - -  Thomson  & Tait (Treatise on Natural Philosophy, Vol. 1, 1867) described the kinematics of simple shear 
in terms of a construction. This construction is redescribed in a geological context. It provides a simple method of 
determining the orientation and amount  of strain in a shear zone, and is an excellent aid to teaching the geometry 
and equations of simple shear. 

INTRODUCTION 

TIdE GEOMETRY and kinematics of simple shear have 
become well-established subjects in structural-geology 
teaching. They also form the theoretical base for strain 
analyses of natural shear zones of all scales, which are 
particularly topical at present. The most complete de- 
scriptions of the geometry of simple shear in the geological 
literature, are given by Ramsay & Graham (1970) and 
Ramsay (1980). 

The kinematics of strain in two and three dimensions 
were set out succinctly in 1867 in the classic text book of 
mechanics and dynamics by Thomson & Tait. (Sir Wil- 
liam Thomson became Lord Kelvin in 1892, and is 
generally acknowledged as the founder of theoretical and 
experimental physics). Thomson & Tait (1867, pp. 
106-107, 1962) described the geometry of simple shear, set 
out the equations relating shear strain and principal 
strains, and presented a simple construction for de- 
termination of the principal strain axes in a zone of shear. 
I have found no account or application of this con- 
struction in the geological literature. Its simplicity invites 
its use in geological teaching and research. 

through P and P' (Fig. lc). OB is the other line of no finite 
longitudinal strain. Thomson & Tait (1867, p. 107) stated 
that AP' was the direction of elongation strain and BP' the 
direction of shortening strain. This can be confirmed in 
Fig. l(c) by noting that angle P'AB is half angle P'OB 
which is the angle between the two lines of no finite 
longitudinal strain. Thomson & Tait also stated that the 
value of elongation strain, currently called (1 + e t), 21/2, 
or X, was given by the ratio AP/AP'. This is equivalent 
to AP'/BP', the cotangent of angle P'AB. 

The construction described above is drawn in Fig. 1 (d) 
in terms of shear strain y and angles 0' and 20' following 
Ramsay (1967, 1980). The elongation strain will be written 
as X and the shortening Z. A set of equations for equal- 
area simple shear can be presented in terms of the 
construction in Fig. l(d). 

X = cot 0' (1) 

tan 20' := 2/? {2) 

Substitution of (1) in (2) gives 

= x - 1 / x  

= X - Z. (3) 

THOMSON & TAIT CONSTRUCTION (1867) 

Thomson & Tait's 1867 analysis is presented here with 
changes only in nomenclature. The geometry is described 
in terms of a shear displacement across a given zone which 
may be called a shear zone. Equal-area plane strain is 
assumed, so the following analysis is two dimensional. 
Identification of two sets of lines of unaltered length is the 
key to the Thomson & Tait construction: these would 
now be termed the lines of no finite longitudinal strain. 

A state of simple shear is illustrated in Fig. l(a). Point P 
is displaced to P' across a zone of unit width, so PP' is the 
shear strain 7. Bisect PP' in N and drop a perpendicular 
across the shear zone to O (Fig. lb). OP' is thus one line of 
no finite longitudinal strain. Draw a circle centered at O 

From (3), X can be written in terms of 3' as 

X = ( 3 ' 2 + 4 )  1'2 + y  

2 
Similarly 

(4) 

(y2 + 4) 1,2 __ y 
Z = = 1 / X .  (S) 

2 

These five equations may be compared with those given 
by Ramsay (1980 p. 89) for equal-area strain in simple- 
shear zones. Ramsay has 

X 2 = ½[2 + 7 2 -'- 7 [7 2 + 4) t ' 2 ]  [6)  

z ~ = ½ [2 + y~ -- 3, (yz + 4) ' ,~  ]. (7) 

These are not written in their simplest form. If (6) is 
written as 
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X z = ¼[72 + 4 + 2?(72 + 4) 1"z + 72], 

it can be seen that this :is a perfect square of equation (4) 
above. 

The simplest equation given by Thomson & Tait is ( 1 ): 
X = cot 0'. I have not found this used in geological 
analyses although it can be verified in Fig. 1 (d) and also by 
applying the standard equation of reciprocal quadratic 
elongation 

2 '  = 2 1 '  COS 2 0 '  -~- 2 2 '  sin e 0' 

to the lines of no finite longitudinal strain. Thus 

COS 2 0 '  
1 - + X 2 sin 2 0', 

X 2 

the solution to which is X = cot 0'. This equation is 
graphed in Fig. 2 so that X can be read directly from 0'. 

d )  

A 0 B 

Fig. 1. Thomson & Tait (18671 construction for simple shear. (a) Shear 
displacement of P to P' across a zone of unit width. (b) & (cl Stages in the 
construction. (d) Thomson & Tait construction in modern nomencla- 
ture. 0' is the angle of extension X to the shear direction and ? the shear 

strain. 

15 

i0 q \ x = cot  6 I" 

,1 

0" 

45 

Fig .  2. G r a p h  o f  X = c o t  0' .  

APPLICATIONS 

The Thomson & Tait construction has useful geologi- 
cal applications. It serves as an excellent aid to teaching 
simple-shear geometry. All the essential equations for 
equal-area simple shear can be derived from one diagram 
by elementary geometry. An interesting outcome of this is 
the simplification of the equations currently in use, and a 
new equation X = cot 0'. 

The construction can also be applied to natural shear 
zones which contain deformed markers of any original 
attitude. The orientation of X, angle 0', is derived from the 
constructed circle. The value of X is determined by the 
ratio of two chords or from cotangent 0'. Zones where the 
shear is approximately uniform are most suitable, such as 
example 1 below. 

Many shear zones, however, are heterogeneous with 
high 7 values in the centre. Such zones could be divided 
into elements (subzones) of approximately uniform shear, 
and circles constructed for each subzone, but the circles 
would be small and the results not accurate. If a sufficient 
proportion of the shear zone is approximately homo- 
geneous the construction is useful. However, in hetero- 
geneous shear zones in general, 0' and X are the best 
determined numerically from equations (1)-(5) or Fig. 2, 
as illustrated by example 2. 

Example 1 

A brittle-ductile shear zone with approximately uni- 
form strain across it is shown in Fig. 3(a) after Ramsay 
(1980, fig. 2b). The amount of shear strain is derived from 
the change in orientation of the veins in the sigmoidal 
zone from outside the zone where the attitude is taken as 
undeformed. 

The Thomson & Tait construction for the centre of vein 
V is drawn in Fig. 3(b). The attitudes of X and Z are 
shown by the lines AP' and BP' respectively. The ratio 
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Fig. 3. (a) Brittle-ductile shear zone with en-echelon quartz veins, from 
MiUook Haven, N. Cornwall, England, drawn from Ramsay (1980, fig. 
2b). Vein V is selected for study and its centre line marked by a broken 
line• (b) The Thomson & Tait construction for vein V. The heavy 
continuous line is an enlargement of the broken line in (a) and the heavy 
broken line the undeformed vein attitude drawn through C, the centre of 
the shear zone. The shear displacement for half the zone is P - P '  and the 
construction follows Fig. 1. The attitudes of X and Z are drawn parallel 

to AP' and BP'. 
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Fig. 4. (a) Ductile shear zone in Lewisian metagabbro from Castell 
Odair, N. Uist, Scotland, drawn from Ramsay (1980, fig. 2c). The shear 
zone is marked by the development of a schistose fabric from an 
isotropic texture outside the zone. (b) Table of 0' and X values at 

localities 1 to 4 in (a). 

so the fabric in the zone may be attributed to the simple 
shear. 

The attitude of the schistose fabric has been measured 
at four positions in Fig. 4(a). Using the equation X = 
cot 0' graphed in Fig. 2, the value of X can be readily deter- 
mined at these points, as tabulated in Fig. 4(b). 
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AP'/BP' gives a value of 1.93 for X. Angle 0' is measured as 
27.8 ° and its cotangent gives X = 1.9. 

Example 2 

Part of a ductile shear zone with the development of a new 
fabric is sketched in Fig. 4(a) after Ramsay (1980, fig. 2c). 
The shear strain is clearly heterogeneous reaching a 
maximum in the centre of the zone. The metagabbro 
outside the shear zone is approximately homogeneous 
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